We identify the task of measuring data to quantitatively characterize the composition of machine learning data and datasets. Similar to an object's height, width, and volume, data measurements quantify different attributes of data along common dimensions that support comparison. Several lines of research have proposed what we refer to as measurements, with differing terminology; we bring some of this work together, particularly in fields of computer vision and language, and build from it to motivate measuring data as a critical component of responsible AI development. Measuring data aids in systematically building and analyzing machine learning (ML) data towards specific goals and gaining better control of what modern ML systems will learn. We conclude with a discussion of the many avenues of future work, the limitations of data measurements, and how to leverage these measurement approaches in research and practice.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
机器学习(ML)研究通常集中在模型上,而最突出的数据集已用于日常的ML任务,而不考虑这些数据集对基本问题的广度,困难和忠诚。忽略数据集的基本重要性已引起了重大问题,该问题涉及现实世界中的数据级联以及数据集驱动标准的模型质量饱和,并阻碍了研究的增长。为了解决此问题,我们提出Dataperf,这是用于评估ML数据集和数据集工作算法的基准软件包。我们打算启用“数据棘轮”,其中培训集将有助于评估相同问题的测试集,反之亦然。这种反馈驱动的策略将产生一个良性的循环,该循环将加速以数据为中心的AI。MLCommons协会将维护Dataperf。
translated by 谷歌翻译
在动态对抗数据收集(DADC)中,人类的注释者是任务的,找到模型努力预测的示例。已经显示出在达克收集的训练数据上培训的模型在对抗和域外设置方面更加强大,并且对于人类来说更难愚弄。然而,DADC比传统数据收集更耗时,因此每个示例更昂贵。在这项工作中,我们检查我们是否可以保持DADC的优势,而不会遭受额外的成本。为此,我们引入了生成的注释助理(GaAs),生成的循环模型,提供了注释器完全批准,修改或拒绝的实时建议。我们在20个实验设置中收集培训数据集,并对这种方法进行详细分析,用于标准和对冲数据收集的提取问题应答(QA)的任务。我们展示了GaAs在注释速度方面提供了显着的效率效益,同时导致改善模型愚蠢的速率。此外,我们还表明,GaA辅助数据在回答任务的各种问题上导致更高的下游模型性能。
translated by 谷歌翻译
Relation extraction (RE), which has relied on structurally annotated corpora for model training, has been particularly challenging in low-resource scenarios and domains. Recent literature has tackled low-resource RE by self-supervised learning, where the solution involves pretraining the relation embedding by RE-based objective and finetuning on labeled data by classification-based objective. However, a critical challenge to this approach is the gap in objectives, which prevents the RE model from fully utilizing the knowledge in pretrained representations. In this paper, we aim at bridging the gap and propose to pretrain and finetune the RE model using consistent objectives of contrastive learning. Since in this kind of representation learning paradigm, one relation may easily form multiple clusters in the representation space, we further propose a multi-center contrastive loss that allows one relation to form multiple clusters to better align with pretraining. Experiments on two document-level RE datasets, BioRED and Re-DocRED, demonstrate the effectiveness of our method. Particularly, when using 1% end-task training data, our method outperforms PLM-based RE classifier by 10.5% and 5.8% on the two datasets, respectively.
translated by 谷歌翻译
As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.
translated by 谷歌翻译
Recent methods in self-supervised learning have demonstrated that masking-based pretext tasks extend beyond NLP, serving as useful pretraining objectives in computer vision. However, existing approaches apply random or ad hoc masking strategies that limit the difficulty of the reconstruction task and, consequently, the strength of the learnt representations. We improve upon current state-of-the-art work in learning adversarial masks by proposing a new framework that generates masks in a sequential fashion with different constraints on the adversary. This leads to improvements in performance on various downstream tasks, such as classification on ImageNet100, STL10, and CIFAR10/100 and segmentation on Pascal VOC. Our results further demonstrate the promising capabilities of masking-based approaches for SSL in computer vision.
translated by 谷歌翻译
As AI systems become more capable, we would like to enlist their help to supervise other AIs. We experiment with methods for training a harmless AI assistant through self-improvement, without any human labels identifying harmful outputs. The only human oversight is provided through a list of rules or principles, and so we refer to the method as 'Constitutional AI'. The process involves both a supervised learning and a reinforcement learning phase. In the supervised phase we sample from an initial model, then generate self-critiques and revisions, and then finetune the original model on revised responses. In the RL phase, we sample from the finetuned model, use a model to evaluate which of the two samples is better, and then train a preference model from this dataset of AI preferences. We then train with RL using the preference model as the reward signal, i.e. we use 'RL from AI Feedback' (RLAIF). As a result we are able to train a harmless but non-evasive AI assistant that engages with harmful queries by explaining its objections to them. Both the SL and RL methods can leverage chain-of-thought style reasoning to improve the human-judged performance and transparency of AI decision making. These methods make it possible to control AI behavior more precisely and with far fewer human labels.
translated by 谷歌翻译
Convolutional neural networks (CNNs) are currently among the most widely-used neural networks available and achieve state-of-the-art performance for many problems. While originally applied to computer vision tasks, CNNs work well with any data with a spatial relationship, besides images, and have been applied to different fields. However, recent works have highlighted how CNNs, like other deep learning models, are sensitive to noise injection which can jeopardise their performance. This paper quantifies the numerical uncertainty of the floating point arithmetic inaccuracies of the inference stage of DeepGOPlus, a CNN that predicts protein function, in order to determine its numerical stability. In addition, this paper investigates the possibility to use reduced-precision floating point formats for DeepGOPlus inference to reduce memory consumption and latency. This is achieved with Monte Carlo Arithmetic, a technique that experimentally quantifies floating point operation errors and VPREC, a tool that emulates results with customizable floating point precision formats. Focus is placed on the inference stage as it is the main deliverable of the DeepGOPlus model that will be used across environments and therefore most likely be subjected to the most amount of noise. Furthermore, studies have shown that the inference stage is the part of the model which is most disposed to being scaled down in terms of reduced precision. All in all, it has been found that the numerical uncertainty of the DeepGOPlus CNN is very low at its current numerical precision format, but the model cannot currently be reduced to a lower precision that might render it more lightweight.
translated by 谷歌翻译
Deep learning classifiers provide the most accurate means of automatically diagnosing diabetic retinopathy (DR) based on optical coherence tomography (OCT) and its angiography (OCTA). The power of these models is attributable in part to the inclusion of hidden layers that provide the complexity required to achieve a desired task. However, hidden layers also render algorithm outputs difficult to interpret. Here we introduce a novel biomarker activation map (BAM) framework based on generative adversarial learning that allows clinicians to verify and understand classifiers decision-making. A data set including 456 macular scans were graded as non-referable or referable DR based on current clinical standards. A DR classifier that was used to evaluate our BAM was first trained based on this data set. The BAM generation framework was designed by combing two U-shaped generators to provide meaningful interpretability to this classifier. The main generator was trained to take referable scans as input and produce an output that would be classified by the classifier as non-referable. The BAM is then constructed as the difference image between the output and input of the main generator. To ensure that the BAM only highlights classifier-utilized biomarkers an assistant generator was trained to do the opposite, producing scans that would be classified as referable by the classifier from non-referable scans. The generated BAMs highlighted known pathologic features including nonperfusion area and retinal fluid. A fully interpretable classifier based on these highlights could help clinicians better utilize and verify automated DR diagnosis.
translated by 谷歌翻译